Papers
Topics
Authors
Recent
2000 character limit reached

Scene Exploration by Vision-Language Models (2409.17641v2)

Published 26 Sep 2024 in cs.RO

Abstract: Active perception enables robots to dynamically gather information by adjusting their viewpoints, a crucial capability for interacting with complex, partially observable environments. In this paper, we present AP-VLM, a novel framework that combines active perception with a Vision-LLM (VLM) to guide robotic exploration and answer semantic queries. Using a 3D virtual grid overlaid on the scene and orientation adjustments, AP-VLM allows a robotic manipulator to intelligently select optimal viewpoints and orientations to resolve challenging tasks, such as identifying objects in occluded or inclined positions. We evaluate our system on two robotic platforms: a 7-DOF Franka Panda and a 6-DOF UR5, across various scenes with differing object configurations. Our results demonstrate that AP-VLM significantly outperforms passive perception methods and baseline models, including Toward Grounded Common Sense Reasoning (TGCSR), particularly in scenarios where fixed camera views are inadequate. The adaptability of AP-VLM in real-world settings shows promise for enhancing robotic systems' understanding of complex environments, bridging the gap between high-level semantic reasoning and low-level control.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: