Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deep Manifold Part 1: Anatomy of Neural Network Manifold (2409.17592v1)

Published 26 Sep 2024 in cs.LG and cs.AI

Abstract: Based on the numerical manifold method principle, we developed a mathematical framework of a neural network manifold: Deep Manifold and discovered that neural networks: 1) is numerical computation combining forward and inverse; 2) have near infinite degrees of freedom; 3) exponential learning capacity with depth; 4) have self-progressing boundary conditions; 5) has training hidden bottleneck. We also define two concepts: neural network learning space and deep manifold space and introduce two concepts: neural network intrinsic pathway and fixed point. We raise three fundamental questions: 1). What is the training completion definition; 2). where is the deep learning convergence point (neural network fixed point); 3). How important is token timestamp in training data given negative time is critical in inverse problem.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 50 tweets and received 533 likes.

Upgrade to Pro to view all of the tweets about this paper: