Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Generalizing Hurwitz's quaternionic proof of Lagrange's and Jacobi's four-square theorems (2409.16970v1)

Published 25 Sep 2024 in math.NT

Abstract: A proof of Lagrange's and Jacobi's four-square theorem due to Hurwitz utilizes orders in a quaternion algebra over the rationals. Seeking a generalization of this technique to orders over number fields, we identify two key components: an order with a good factorization theory and the condition that all orbits under the action of the group of elements of norm $1$ acting by multiplication intersect the suborder corresponding to the quadratic form to be studied. We use recent results on class numbers of quaternion orders and then find all suborders satisfying the orbit condition. Subsequently, we obtain universality and formulas for the number of representations by the corresponding quadratic forms. We also present a quaternionic proof of G\"otzky's four-square theorem.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: