Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

HVT: A Comprehensive Vision Framework for Learning in Non-Euclidean Space (2409.16897v2)

Published 25 Sep 2024 in cs.CV

Abstract: Data representation in non-Euclidean spaces has proven effective for capturing hierarchical and complex relationships in real-world datasets. Hyperbolic spaces, in particular, provide efficient embeddings for hierarchical structures. This paper introduces the Hyperbolic Vision Transformer (HVT), a novel extension of the Vision Transformer (ViT) that integrates hyperbolic geometry. While traditional ViTs operate in Euclidean space, our method enhances the self-attention mechanism by leveraging hyperbolic distance and M\"obius transformations. This enables more effective modeling of hierarchical and relational dependencies in image data. We present rigorous mathematical formulations, showing how hyperbolic geometry can be incorporated into attention layers, feed-forward networks, and optimization. We offer improved performance for image classification using the ImageNet dataset.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: