Papers
Topics
Authors
Recent
2000 character limit reached

A PyTorch Benchmark for High-Contrast Imaging Post Processing (2409.16466v1)

Published 24 Sep 2024 in astro-ph.EP, astro-ph.IM, and astro-ph.SR

Abstract: Direct imaging of exoplanets is a challenging task that involves distinguishing faint planetary signals from the overpowering glare of their host stars, often obscured by time-varying stellar noise known as "speckles". The predominant algorithms for speckle noise subtraction employ principal-based point spread function (PSF) fitting techniques to discern planetary signals from stellar speckle noise. We introduce torchKLIP, a benchmark package developed within the ML framework PyTorch. This work enables ML techniques to utilize extensive PSF libraries to enhance direct imaging post-processing. Such advancements promise to improve the post-processing of high-contrast images from leading-edge astronomical instruments like the James Webb Space Telescope and extreme adaptive optics systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.