Papers
Topics
Authors
Recent
2000 character limit reached

Large Bayesian Tensor VARs with Stochastic Volatility (2409.16132v1)

Published 24 Sep 2024 in econ.EM

Abstract: We consider Bayesian tensor vector autoregressions (TVARs) in which the VAR coefficients are arranged as a three-dimensional array or tensor, and this coefficient tensor is parameterized using a low-rank CP decomposition. We develop a family of TVARs using a general stochastic volatility specification, which includes a wide variety of commonly-used multivariate stochastic volatility and COVID-19 outlier-augmented models. In a forecasting exercise involving 40 US quarterly variables, we show that these TVARs outperform the standard Bayesian VAR with the Minnesota prior. The results also suggest that the parsimonious common stochastic volatility model tends to forecast better than the more flexible Cholesky stochastic volatility model.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.