Papers
Topics
Authors
Recent
2000 character limit reached

DepMamba: Progressive Fusion Mamba for Multimodal Depression Detection (2409.15936v1)

Published 24 Sep 2024 in cs.CY, cs.CV, and cs.HC

Abstract: Depression is a common mental disorder that affects millions of people worldwide. Although promising, current multimodal methods hinge on aligned or aggregated multimodal fusion, suffering two significant limitations: (i) inefficient long-range temporal modeling, and (ii) sub-optimal multimodal fusion between intermodal fusion and intramodal processing. In this paper, we propose an audio-visual progressive fusion Mamba for multimodal depression detection, termed DepMamba. DepMamba features two core designs: hierarchical contextual modeling and progressive multimodal fusion. On the one hand, hierarchical modeling introduces convolution neural networks and Mamba to extract the local-to-global features within long-range sequences. On the other hand, the progressive fusion first presents a multimodal collaborative State Space Model (SSM) extracting intermodal and intramodal information for each modality, and then utilizes a multimodal enhanced SSM for modality cohesion. Extensive experimental results on two large-scale depression datasets demonstrate the superior performance of our DepMamba over existing state-of-the-art methods. Code is available at https://github.com/Jiaxin-Ye/DepMamba.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.