Papers
Topics
Authors
Recent
2000 character limit reached

Identification For Control Based on Neural Networks: Approximately Linearizable Models (2409.15858v2)

Published 24 Sep 2024 in eess.SY, cs.AI, and cs.SY

Abstract: This work presents a control-oriented identification scheme for efficient control design and stability analysis of nonlinear systems. Neural networks are used to identify a discrete-time nonlinear state-space model to approximate time-domain input-output behavior of a nonlinear system. The network is constructed such that the identified model is approximately linearizable by feedback, ensuring that the control law trivially follows from the learning stage. After the identification and quasi-linearization procedures, linear control theory comes at hand to design robust controllers and study stability of the closed-loop system. The effectiveness and interest of the methodology are illustrated throughout the paper on popular benchmarks for system identification.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube