Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

GISExplainer: On Explainability of Graph Neural Networks via Game-theoretic Interaction Subgraphs (2409.15698v2)

Published 24 Sep 2024 in cs.LG and cs.SI

Abstract: Explainability is crucial for the application of black-box Graph Neural Networks (GNNs) in critical fields such as healthcare, finance, cybersecurity, and more. Various feature attribution methods, especially the perturbation-based methods, have been proposed to indicate how much each node/edge contributes to the model predictions. However, these methods fail to generate connected explanatory subgraphs that consider the causal interaction between edges within different coalition scales, which will result in unfaithful explanations. In our study, we propose GISExplainer, a novel game-theoretic interaction based explanation method that uncovers what the underlying GNNs have learned for node classification by discovering human-interpretable causal explanatory subgraphs. First, GISExplainer defines a causal attribution mechanism that considers the game-theoretic interaction of multi-granularity coalitions in candidate explanatory subgraph to quantify the causal effect of an edge on the prediction. Second, GISExplainer assumes that the coalitions with negative effects on the predictions are also significant for model interpretation, and the contribution of the computation graph stems from the combined influence of both positive and negative interactions within the coalitions. Then, GISExplainer regards the explanation task as a sequential decision process, in which a salient edges is successively selected and connected to the previously selected subgraph based on its causal effect to form an explanatory subgraph, ultimately striving for better explanations. Additionally, an efficiency optimization scheme is proposed for the causal attribution mechanism through coalition sampling. Extensive experiments demonstrate that GISExplainer achieves better performance than state-of-the-art approaches w.r.t. two quantitative metrics: Fidelity and Sparsity.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: