Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Smoothing the Conditional Value-at-Risk based Pickands Estimators (2409.15677v1)

Published 24 Sep 2024 in math.ST, stat.ME, and stat.TH

Abstract: We incorporate the conditional value-at-risk (CVaR) quantity into a generalized class of Pickands estimators. By introducing CVaR, the newly developed estimators not only retain the desirable properties of consistency, location, and scale invariance inherent to Pickands estimators, but also achieve a reduction in mean squared error (MSE). To address the issue of sensitivity to the choice of the number of top order statistics used for the estimation, and ensure robust estimation, which are crucial in practice, we first propose a beta measure, which is a modified beta density function, to smooth the estimator. Then, we develop an algorithm to approximate the asymptotic mean squared error (AMSE) and determine the optimal beta measure that minimizes AMSE. A simulation study involving a wide range of distributions shows that our estimators have good and highly stable finite-sample performance and compare favorably with the other estimators.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube