Papers
Topics
Authors
Recent
2000 character limit reached

On the $f$-vectors of flow polytopes for the complete graph

Published 23 Sep 2024 in math.CO | (2409.15519v1)

Abstract: The Chan-Robbins-Yuen polytope ($CRY_n$) of order $n$ is a face of the Birkhoff polytope of doubly stochastic matrices that is also a flow polytope of the directed complete graph $K_{n+1}$ with netflow $(1,0,0, \ldots , 0, -1)$. The volume and lattice points of this polytope have been actively studied, however its face structure has received less attention. We give generating functions and explicit formulas for computing the $f$-vector by using Hille's (2003) result bijecting faces of a flow polytope to certain graphs, as well as Andresen-Kjeldsen's (1976) result that enumerates certain subgraphs of the directed complete graph. We extend our results to flow polytopes of the complete graph having arbitrary (non-negative) netflow vectors and recover the $f$-vector of the Tesler polytope of M\'esz\'aros--Morales--Rhoades (2017).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.