Framework for Robust Localization of UUVs and Mapping of Net Pens (2409.15475v1)
Abstract: This paper presents a general framework integrating vision and acoustic sensor data to enhance localization and mapping in highly dynamic and complex underwater environments, with a particular focus on fish farming. The proposed pipeline is suited to obtain both the net-relative pose estimates of an Unmanned Underwater Vehicle (UUV) and the depth map of the net pen purely based on vision data. Furthermore, this paper presents a method to estimate the global pose of an UUV fusing the net-relative pose estimates with acoustic data. The pipeline proposed in this paper showcases results on datasets obtained from industrial-scale fish farms and successfully demonstrates that the vision-based TRU-Depth model, when provided with sparse depth priors from the FFT method and combined with the Wavemap method, can estimate both net-relative and global position of the UUV in real time and generate detailed 3D maps suitable for autonomous navigation and inspection purposes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.