Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

FRSZ2 for In-Register Block Compression Inside GMRES on GPUs (2409.15468v1)

Published 23 Sep 2024 in cs.PF and cs.DS

Abstract: The performance of the GMRES iterative solver on GPUs is limited by the GPU main memory bandwidth. Compressed Basis GMRES outperforms GMRES by storing the Krylov basis in low precision, thereby reducing the memory access. An open question is whether compression techniques that are more sophisticated than casting to low precision can enable large runtime savings while preserving the accuracy of the final results. This paper presents the lightweight in-register compressor FRSZ2 that can decompress at the bandwidth speed of a modern NVIDIA H100 GPU. In an experimental evaluation, we demonstrate using FRSZ2 instead of low precision for compression of the Krylov basis can bring larger runtime benefits without impacting final accuracy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.