Papers
Topics
Authors
Recent
2000 character limit reached

Learning Task-Based Trainable Neuromorphic ADCs via Power-Aware Distillation (2409.15300v1)

Published 4 Sep 2024 in cs.NE

Abstract: The ability to process signals in digital form depends on analog-to-digital converters (ADCs). Traditionally, ADCs are designed to ensure that the digital representation closely matches the analog signal. However, recent studies have shown that significant power and memory savings can be achieved through task-based acquisition, where the acquisition process is tailored to the downstream processing task. An emerging technology for task-based acquisition involves the use of memristors, which are considered key enablers for neuromorphic computing. Memristors can implement ADCs with tunable mappings, allowing adaptation to specific system tasks or power constraints. In this work, we study task-based acquisition for a generic classification task using memristive ADCs. We consider the unique characteristics of this such neuromorphic ADCs, including their power consumption and noisy read-write behavior, and propose a physically compliant model based on resistive successive approximation register ADCs integrated with memristor components, enabling the adjustment of quantization regions. To optimize performance, we introduce a data-driven algorithm that jointly tunes task-based memristive ADCs alongside both digital and analog processing. Our design addresses the inherent stochasticity of memristors through power-aware distillation, complemented by a specialized learning algorithm that adapts to their unique analog-to-digital mapping. The proposed approach is shown to enhance accuracy by up to 27% and reduce power consumption by up to 66% compared to uniform ADCs. Even under noisy conditions, our method achieves substantial gains, with accuracy improvements of up to 19% and power reductions of up to 57%. These results highlight the effectiveness of our power-aware neuromorphic ADCs in improving system performance across diverse tasks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. T. Vol, L. Danial, and N. Shlezinger, “Power-aware task-based learning of neuromorphic ADCs,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024, pp. 5850–5854.
  2. J. Chen, Y. Fang, A. Khisti, A. Ozgur, N. Shlezinger, and C. Tian, “Information compression in the AI era: Recent advances and future challenges,” arXiv preprint arXiv:2406.10036, 2024.
  3. R. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun., vol. 17, no. 4, pp. 539–550, 1999.
  4. H. Dalmia and S. K. Sinha, “Analog to digital converters (ADC): A literature review,” in E3S Web of Conferences, vol. 184.   EDP Sciences, 2020, p. 01025.
  5. K. Humood, B. Mohammad, H. Abunahla, and A. Azzam, “On-chip tunable memristor-based flash-adc converter for artificial intelligence applications,” IET Circuits, Devices & Systems, vol. 14, no. 1, pp. 107–114, 2020.
  6. Z. Si, C. Wang, X. Jiang, Z. Li, G. Huang, A. Serb, T. Prodromakis, S. Wang, and C. Papavassiliou, “Memristor-assisted background calibration for SAR ADCs: A feasibility study,” IEEE Trans. Circuits Syst. I, vol. 70, no. 9, pp. 3497–3508, 2023.
  7. A. Singh, S. Diware, A. Gebregiorgis, R. Bishnoi, F. Catthoor, R. V. Joshi, and S. Hamdioui, “Low-power memristor-based computing for edge-ai applications,” in IEEE International Symposium on Circuits and Systems (ISCAS), 2021.
  8. C. Mead, “Neuromorphic electronic systems,” Proc. IEEE, vol. 78, no. 10, pp. 1629–1636, 1990.
  9. X. Yang, B. Taylor, A. Wu, Y. Chen, and L. O. Chua, “Research progress on memristor: From synapses to computing systems,” IEEE Trans. Circuits Syst. I, vol. 69, no. 5, pp. 1845–1857, 2022.
  10. F. Aguirre et al., “Hardware implementation of memristor-based artificial neural networks,” Nature Communications, vol. 15, no. 1, p. 1974, 2024.
  11. L. Danial, N. Wainstein, S. Kraus, and S. Kvatinsky, “Breaking through the speed-power-accuracy tradeoff in ADCs using a memristive neuromorphic architecture,” IEEE Trans. Emerg. Topics Comput., vol. 2, no. 5, pp. 396–409, 2018.
  12. L. Danial, K. Sharma, and S. Kvatinsky, “A pipelined memristive neural network analog-to-digital converter,” in IEEE International Symposium on Circuits and Systems (ISCAS), 2020.
  13. X. Guo, F. Merrikh-Bayat, L. Gao, B. D. Hoskins, F. Alibart, B. Linares-Barranco, L. Theogarajan, C. Teuscher, and D. B. Strukov, “Modeling and experimental demonstration of a Hopfield network analog-to-digital converter with hybrid CMOS/memristor circuits,” Frontiers in Neuroscience, vol. 9, p. 488, 2015.
  14. L. Danial, V. Gupta, E. Pikhay, Y. Roizin, and S. Kvatinsky, “Modeling a floating-gate memristive device for computer aided design of neuromorphic computing,” in 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2020, pp. 472–477.
  15. V. Joshi, M. L. Gallo, S. Haefeli, I. Boybat, S. R. Nandakumar, C. Piveteau, M. Dazzi, B. Rajendran, A. Sebastian, and E. Eleftheriou, “Accurate deep neural network inference using computational phase-change memory,” Nature Communications, vol. 11, no. 1, p. 2473, 2020.
  16. J. Kern, S. Henwood, G. Mordido, E. Dupraz, A. Aïssa-El-Bey, Y. Savaria, and F. Leduc-Primeau, “Fast and accurate output error estimation for memristor-based deep neural networks,” IEEE Trans. Signal Process., vol. 72, pp. 1205–1218, 2024.
  17. E. Dupraz and L. R. Varshney, “Noisy in-memory recursive computation with memristor crossbars,” IEEE International Symposium on Information Theory (ISIT), pp. 804–809, 2020.
  18. A. Kipnis, Y. C. Eldar, and A. J. Goldsmith, “Analog-to-digital compression: A new paradigm for converting signals to bits,” IEEE Signal Process. Mag., vol. 35, no. 3, pp. 16–39, 2018.
  19. H. Zou, C. Zhang, S. Lasaulce, L. Saludjian, and H. V. Poor, “Goal-oriented quantization: Analysis, design, and application to resource allocation,” IEEE J. Sel. Areas Commun., vol. 41, no. 1, pp. 42–54, 2022.
  20. D. Wen, P. Liu, G. Zhu, Y. Shi, J. Xu, Y. C. Eldar, and S. Cui, “Task-oriented sensing, computation, and communication integration for multi-device edge AI,” IEEE Trans. Wireless Commun., vol. 23, no. 3, pp. 2486–2502, 2024.
  21. D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K. Wong, and C.-B. Chae, “Beyond transmitting bits: Context, semantics, and task-oriented communications,” IEEE J. Sel. Areas Commun., vol. 41, no. 1, pp. 5–41, 2022.
  22. Y. Shi, Y. Zhou, D. Wen, Y. Wu, C. Jiang, and K. B. Letaief, “Task-oriented communications for 6G: Vision, principles, and technologies,” IEEE Wireless Commun., vol. 30, no. 3, pp. 78–85, 2023.
  23. T. M. Getu, G. Kaddoum, and M. Bennis, “A survey on goal-oriented semantic communication: Techniques, challenges, and future directions,” IEEE Access, vol. 12, pp. 51 223–51 274, 2024.
  24. Z. Lu, R. Li, K. Lu, X. Chen, E. Hossain, Z. Zhao, and H. Zhang, “Semantics-empowered communications: A tutorial-cum-survey,” IEEE Commun. Surveys Tuts., vol. 26, no. 1, pp. 41–79, 2023.
  25. N. Shlezinger, Y. C. Eldar, and M. R. Rodrigues, “Hardware-limited task-based quantization,” IEEE Trans. Signal Process., vol. 67, no. 20, pp. 5223–5238, 2019.
  26. ——, “Asymptotic task-based quantization with application to massive MIMO,” IEEE Trans. Signal Process., vol. 67, no. 15, pp. 3995–4012, 2019.
  27. P. Neuhaus, N. Shlezinger, M. Dörpinghaus, Y. C. Eldar, and G. Fettweis, “Task-based analog-to-digital converters,” IEEE Trans. Signal Process., vol. 69, pp. 5403–5418, 2021.
  28. S. Salamtian, N. Shlezinger, Y. C. Eldar, and M. Medard, “Task-based quantization for recovering quadratic functions using principal inertia components,” in IEEE International Symposium on Information Theory (ISIT), 2019.
  29. N. I. Bernardo, J. Zhu, Y. C. Eldar, and J. Evans, “Design and analysis of hardware-limited non-uniform task-based quantizers,” IEEE Trans. Signal Process., vol. 71, pp. 1551–1562, 2023.
  30. M. B. Mashhadi, Q. Yang, and D. Gündüz, “Distributed deep convolutional compression for massive MIMO CSI feedback,” IEEE Trans. Wireless Commun., vol. 20, no. 4, pp. 2621–2633, 2020.
  31. R. Torfason, F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. Van Gool, “Towards image understanding from deep compression without decoding,” arXiv preprint arXiv:1803.06131, 2018.
  32. N. Shlezinger and Y. C. Eldar, “Deep task-based quantization,” Entropy, vol. 23, no. 1, p. 104, 2021.
  33. J. Shao, Y. Mao, and J. Zhang, “Learning task-oriented communication for edge inference: An information bottleneck approach,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 197–211, 2021.
  34. N. Shlezinger, A. Amar, B. Luijten, R. J. van Sloun, and Y. C. Eldar, “Deep task-based analog-to-digital conversion,” IEEE Trans. Signal Process., vol. 70, pp. 6021–6034, 2022.
  35. P. Del Hougne, M. F. Imani, A. V. Diebold, R. Horstmeyer, and D. R. Smith, “Learned integrated sensing pipeline: Reconfigurable metasurface transceivers as trainable physical layer in an artificial neural network,” Advanced Science, vol. 7, no. 3, p. 1901913, 2020.
  36. S. Scholl, “Classification of radio signals and HF transmission modes with deep learning,” arXiv preprint arXiv:1906.04459, 2019.
  37. T. Jiang, W. Liu, F. Y. Zhong, C. Zhong, and P. Y. Chiang, “Single-channel, 1.25-GS/s, 6-bit, loop-unrolled asynchronous SAR-ADC in 40nm-CMOS,” in IEEE Custom Integrated Circuits Conference, 2010.
  38. S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “VTEAM: A general model for voltage-controlled memristors,” IEEE Trans. Circuits Syst. II, vol. 62, no. 8, pp. 786–790, 2015.
  39. H. Feng, “Impact of atomistic device variability on analogue circuit design,” Ph.D. dissertation, University of Glasgow, 2011.
  40. F. Xi, N. Shlezinger, and Y. C. Eldar, “BiLiMO: Bit-limited MIMO radar via task-based quantization,” IEEE Trans. Signal Process., vol. 69, pp. 6267–6282, 2021.
  41. I. A. Huijben, B. S. Veeling, K. Janse, M. Mischi, and R. J. van Sloun, “Learning sub-sampling and signal recovery with applications in ultrasound imaging,” IEEE Trans. Med. Imag., vol. 39, no. 12, pp. 3955–3966, 2020.
  42. N. Shlezinger and T. Routtenberg, “Discriminative and generative learning for linear estimation of random signals [lecture notes],” IEEE Signal Process. Mag., 2023, early access.
  43. E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Timofte, L. Benini, and L. V. Gool, “Soft-to-hard vector quantization for end-to-end learning compressible representations,” Advances in neural information processing systems, vol. 30, 2017.
  44. C. Zhou, P. Kadambi, M. Mattina, and P. N. Whatmough, “Noisy machines: Understanding noisy neural networks and enhancing robustness to analog hardware errors using distillation,” arXiv preprint arXiv:2001.04974, 2020.
  45. Y. Shao, S. C. Liew, and D. Gündüz, “Denoising noisy neural networks: A Bayesian approach with compensation,” IEEE Trans. Signal Process., vol. 71, pp. 2460–2474, 2023.
  46. M. J. Rasch, C. Mackin, M. L. Gallo, A. Chen, A. Fasoli, F. Odermatt, N. Li, S. R. Nandakumar, P. Narayanan, H. Tsai, G. W. Burr, A. Sebastian, and V. Narayanan, “Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators,” Nature Communications, vol. 14, no. 1, p. 5282, 2023.
  47. M. Qin and D. Vu, “Training recurrent neural networks against noisy computations during inference,” Asilomar Conference on Signals, Systems, and Computers, pp. 71–75, 2018.
  48. J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A survey,” International Journal of Computer Vision, vol. 129, no. 6, pp. 1789–1819, 2021.
  49. K. Zhang, H. Ying, H.-N. Dai, L. Li, Y. Peng, K. Guo, and H. Yu, “Compacting deep neural networks for Internet of Things: Methods and applications,” IEEE Internet Things J., vol. 8, no. 15, pp. 11 935–11 959, 2021.
  50. E. Tasci, T. Zirtiloglu, A. Yasar, Y. C. Eldar, N. Shlezinger, and R. T. Yazicigil, “Robust task-specific beamforming with low-resolution ADCs for power-efficient hybrid MIMO receivers,” arXiv preprint arXiv:2212.00107, 2022.
  51. Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 12, pp. 5586–5609, 2021.
  52. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  53. G. Shen, J. Zhang, A. Marshall, and J. R. Cavallaro, “Towards scalable and channel-robust radio frequency fingerprint identification for LoRa,” IEEE Trans. Inf. Forensics Security, vol. 17, pp. 774–787, 2022.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.