Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Equivariance-based self-supervised learning for audio signal recovery from clipped measurements (2409.15283v1)

Published 3 Sep 2024 in eess.AS, cs.IR, cs.LG, cs.SD, and eess.SP

Abstract: In numerous inverse problems, state-of-the-art solving strategies involve training neural networks from ground truth and associated measurement datasets that, however, may be expensive or impossible to collect. Recently, self-supervised learning techniques have emerged, with the major advantage of no longer requiring ground truth data. Most theoretical and experimental results on self-supervised learning focus on linear inverse problems. The present work aims to study self-supervised learning for the non-linear inverse problem of recovering audio signals from clipped measurements. An equivariance-based selfsupervised loss is proposed and studied. Performance is assessed on simulated clipped measurements with controlled and varied levels of clipping, and further reported on standard real music signals. We show that the performance of the proposed equivariance-based self-supervised declipping strategy compares favorably to fully supervised learning while only requiring clipped measurements alone for training.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.