Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 218 tok/s Pro
2000 character limit reached

Novel Gradient Sparsification Algorithm via Bayesian Inference (2409.14893v1)

Published 23 Sep 2024 in cs.LG, cs.IT, eess.SP, and math.IT

Abstract: Error accumulation is an essential component of the Top-$k$ sparsification method in distributed gradient descent. It implicitly scales the learning rate and prevents the slow-down of lateral movement, but it can also deteriorate convergence. This paper proposes a novel sparsification algorithm called regularized Top-$k$ (RegTop-$k$) that controls the learning rate scaling of error accumulation. The algorithm is developed by looking at the gradient sparsification as an inference problem and determining a Bayesian optimal sparsification mask via maximum-a-posteriori estimation. It utilizes past aggregated gradients to evaluate posterior statistics, based on which it prioritizes the local gradient entries. Numerical experiments with ResNet-18 on CIFAR-10 show that at $0.1\%$ sparsification, RegTop-$k$ achieves about $8\%$ higher accuracy than standard Top-$k$.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.