Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Top-k Sparsification in Distributed Deep Learning (1911.08772v1)

Published 20 Nov 2019 in cs.LG, cs.DC, and stat.ML

Abstract: Distributed stochastic gradient descent (SGD) algorithms are widely deployed in training large-scale deep learning models, while the communication overhead among workers becomes the new system bottleneck. Recently proposed gradient sparsification techniques, especially Top-$k$ sparsification with error compensation (TopK-SGD), can significantly reduce the communication traffic without an obvious impact on the model accuracy. Some theoretical studies have been carried out to analyze the convergence property of TopK-SGD. However, existing studies do not dive into the details of Top-$k$ operator in gradient sparsification and use relaxed bounds (e.g., exact bound of Random-$k$) for analysis; hence the derived results cannot well describe the real convergence performance of TopK-SGD. To this end, we first study the gradient distributions of TopK-SGD during the training process through extensive experiments. We then theoretically derive a tighter bound for the Top-$k$ operator. Finally, we exploit the property of gradient distribution to propose an approximate top-$k$ selection algorithm, which is computing-efficient for GPUs, to improve the scaling efficiency of TopK-SGD by significantly reducing the computing overhead. Codes are available at: \url{https://github.com/hclhkbu/GaussianK-SGD}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shaohuai Shi (47 papers)
  2. Xiaowen Chu (108 papers)
  3. Ka Chun Cheung (32 papers)
  4. Simon See (74 papers)
Citations (83)