Papers
Topics
Authors
Recent
2000 character limit reached

Characterizing nonuniform hyperbolicity by Mather-type admissibility (2409.14809v1)

Published 23 Sep 2024 in math.DS

Abstract: We consider linear cocycles acting on Banach spaces which satisfy the assumptions of the multiplicative ergodic theorem. A cocycle is nonuniformly hyperbolic if all Lyapunov exponents are non-zero, which is equivalent to the existence of a tempered exponential dichotomy. We provide an equivalent characterization of nonuniform hyperbolicity in terms of a Mather-type admissibility of a pair of weighted function spaces. As an application we give a short proof of the robustness of tempered exponential dichotomies under small linear perturbation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.