Papers
Topics
Authors
Recent
2000 character limit reached

Speechworthy Instruction-tuned Language Models (2409.14672v1)

Published 23 Sep 2024 in cs.AI

Abstract: Current instruction-tuned LLMs are exclusively trained with textual preference data and thus are often not aligned with the unique requirements of other modalities, such as speech. To better align LLMs with the speech domain, we explore (i) prompting strategies grounded in radio-industry best practices and (ii) preference learning using a novel speech-based preference data of 20K samples, generated with a wide spectrum of prompts that induce varying dimensions of speech-suitability and labeled by annotators who listen to response pairs. Both human and automatic evaluation show that both prompting and preference learning increase the speech-suitability of popular instruction-tuned LLMs. Interestingly, we find that prompting and preference learning can be additive; combining them achieves the best win rates in head-to-head comparison, resulting in responses that are preferred or tied to the base model in 76.2% of comparisons on average. Lastly, we share lexical, syntactical, and qualitative analyses to showcase how each method contributes to improving the speech-suitability of generated responses.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.