Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Effectively Enhancing Vision Language Large Models by Prompt Augmentation and Caption Utilization (2409.14484v1)

Published 22 Sep 2024 in cs.CV

Abstract: Recent studies have shown that Vision Language Large Models (VLLMs) may output content not relevant to the input images. This problem, called the hallucination phenomenon, undoubtedly degrades VLLM performance. Therefore, various anti-hallucination techniques have been proposed to make model output more reasonable and accurate. Despite their successes, from extensive tests we found that augmenting the prompt (e.g. word appending, rewriting, and spell error etc.) may change model output and make the output hallucinate again. To cure this drawback, we propose a new instruct-tuning framework called Prompt Augmentation and Caption Utilization (PACU) to boost VLLM's generation ability under the augmented prompt scenario. Concretely, on the one hand, PACU exploits existing LLMs to augment and evaluate diverse prompts automatically. The resulting high-quality prompts are utilized to enhance VLLM's ability to process different prompts. On the other hand, PACU exploits image captions to jointly work with image features as well as the prompts for response generation. When the visual feature is inaccurate, LLM can capture useful information from the image captions for response generation. Extensive experiments on hallucination evaluation and prompt-augmented datasets demonstrate that our PACU method can work well with existing schemes to effectively boost VLLM model performance. Code is available in https://github.com/zhaominyiz/PACU.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.