Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The sparseness of g-convex functions (2409.14434v1)

Published 22 Sep 2024 in math.DG and math.OC

Abstract: The g-convexity of functions on manifolds is a generalization of the convexity of functions on Rn. It plays an essential role in both differential geometry and non-convex optimization theory. This paper is concerned with g-convex smooth functions on manifolds. We establish criteria for the existence of a Riemannian metric (or connection) with respect to which a given function is g-convex. Using these criteria, we obtain three sparseness results for g-convex functions: (1) The set of g-convex functions on a compact manifold is nowhere dense in the space of smooth functions. (2) Most polynomials on Rn that is g-convex with respect to some geodesically complete connection has at most one critical point. (3) The density of g-convex univariate (resp. quadratic, monomial, additively separable) polynomials asymptotically decreases to zero

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube