Approximation properties of the intermediate $β$-expansions
Abstract: For fixed $\beta>1$ and $\alpha\in[0,1)$, each $x\in[0,1]$ has an \emph{intermediate $\beta$-expansion} of the form $x=\sum_{i=1}\infty\frac{c_i-\alpha}{\betai}$. Each such expansion produces for the number $x$ a sequence of approximations $\left(\sum_{i=1}{n}\frac{c_i-\alpha}{\betai}\right)_{n\geq1}$. In this paper we study approximation properties by considering $M(\beta,\alpha)$, the expected value of the corresponding \emph{normalized errors} $(\theta_{\beta,\alpha}n(x))_{n\geq 1}$, given by $$\theta_{\beta,\alpha}n(x):=\betan\left(x-\sum_{i=1}n\frac{c_i-\alpha}{\betai}\right),\quad n\in\mathbb{N}.$$ We prove that $M(\beta,\alpha)$ is continuous in $\beta$ and $\alpha$, respectively. For a fixed $\beta>\sqrt 2$, by the continuity property, $\mathcal{M_\beta}:={M(\beta,\alpha):\alpha\in[0,1)}=[M_\beta,1-M_\beta]$ where $M_\beta=\min{M(\beta,\alpha):\alpha\in[0,1)}$. Taking $\beta$ to be a multinacci number, $M(\beta,\alpha)$ is linear on $[0,1-(\beta))$ and locally linear for Lebesgue a.e. $\alpha\in[1-(\beta),1)$; moreover, whether it is increasing or decreasing depends only on the sign of $T_{\beta,\alpha}{n-1}(1)-T_{\beta,\alpha}{n-1}(0)$ where $n=\min{k:T_{\beta,\alpha}k(1)-T_{\beta,\alpha}k(0)=0}$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.