Papers
Topics
Authors
Recent
2000 character limit reached

A Sinkhorn Regularized Adversarial Network for Image Guided DEM Super-resolution using Frequency Selective Hybrid Graph Transformer (2409.14198v1)

Published 21 Sep 2024 in eess.IV and cs.CV

Abstract: Digital Elevation Model (DEM) is an essential aspect in the remote sensing (RS) domain to analyze various applications related to surface elevations. Here, we address the generation of high-resolution (HR) DEMs using HR multi-spectral (MX) satellite imagery as a guide by introducing a novel hybrid transformer model consisting of Densely connected Multi-Residual Block (DMRB) and multi-headed Frequency Selective Graph Attention (M-FSGA). To promptly regulate this process, we utilize the notion of discriminator spatial maps as the conditional attention to the MX guide. Further, we present a novel adversarial objective related to optimizing Sinkhorn distance with classical GAN. In this regard, we provide both theoretical and empirical substantiation of better performance in terms of vanishing gradient issues and numerical convergence. Based on our experiments on 4 different DEM datasets, we demonstrate both qualitative and quantitative comparisons with available baseline methods and show that the performance of our proposed model is superior to others with sharper details and minimal errors.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.