Papers
Topics
Authors
Recent
2000 character limit reached

Towards Building Efficient Sentence BERT Models using Layer Pruning (2409.14168v1)

Published 21 Sep 2024 in cs.CL and cs.LG

Abstract: This study examines the effectiveness of layer pruning in creating efficient Sentence BERT (SBERT) models. Our goal is to create smaller sentence embedding models that reduce complexity while maintaining strong embedding similarity. We assess BERT models like Muril and MahaBERT-v2 before and after pruning, comparing them with smaller, scratch-trained models like MahaBERT-Small and MahaBERT-Smaller. Through a two-phase SBERT fine-tuning process involving Natural Language Inference (NLI) and Semantic Textual Similarity (STS), we evaluate the impact of layer reduction on embedding quality. Our findings show that pruned models, despite fewer layers, perform competitively with fully layered versions. Moreover, pruned models consistently outperform similarly sized, scratch-trained models, establishing layer pruning as an effective strategy for creating smaller, efficient embedding models. These results highlight layer pruning as a practical approach for reducing computational demand while preserving high-quality embeddings, making SBERT models more accessible for languages with limited technological resources.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.