Papers
Topics
Authors
Recent
2000 character limit reached

Transfer Learning and Double U-Net Empowered Wave Propagation Model in Complex Indoor Environment (2409.13833v3)

Published 20 Sep 2024 in eess.SP

Abstract: A Machine Learning (ML) network based on transfer learning and transformer networks is applied to wave propagation models for complex indoor settings. This network is designed to predict signal propagation in environments with a variety of objects, effectively simulating the diverse range of furniture typically found in indoor spaces. We propose Attention U-Net with Efficient Networks as the backbone, to process images encoded with the essential information of the indoor environment. The indoor environment is defined by its fundamental structure, such as the arrangement of walls, windows, and doorways, alongside varying configurations of furniture placement. An innovative algorithm is introduced to generate a 3D environment from a 2D floorplan, which is crucial for efficient collection of data for training. The model is evaluated by comparing the predicted signal coverage map with ray tracing (RT) simulations. The prediction results show a root mean square error of less than 6 dB across all tested scenarios, with significant improvements observed when using a Double U-Net structure compared to a single U-Net model.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.