Papers
Topics
Authors
Recent
2000 character limit reached

Dynamically generated concatenated codes and their phase diagrams (2409.13801v2)

Published 20 Sep 2024 in quant-ph, cond-mat.dis-nn, and cond-mat.stat-mech

Abstract: We formulate code concatenation as the action of a unitary quantum circuit on an expanding tree geometry and find that for certain classes of gates, applied identically at each node, a binary tree circuit encodes a single logical qubit with code distance that grows exponentially in the depth of the tree. When there is noise in the bulk or at the end of this encoding circuit, the system undergoes a phase transition between a coding phase, where an optimal decoder can successfully recover logical information, and a non-coding phase. Leveraging the tree structure, we combine the formalism of "tensor enumerators" from quantum coding theory with standard recursive techniques for classical spin models on the Bethe lattice to explore these phases. In the presence of bulk errors, the coding phase is a type of spin glass, characterized by a distribution of failure probabilities. When the errors are heralded, the recursion relation is exactly solvable, giving us an analytic handle on the phase diagram.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.