Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence (2409.13291v1)

Published 20 Sep 2024 in cs.CV and cs.GR

Abstract: Current data-driven methodologies for point cloud matching demand extensive training time and computational resources, presenting significant challenges for model deployment and application. In the point cloud matching task, recent advancements with an encoder-only Transformer architecture have revealed the emergence of semantically meaningful patterns in the attention heads, particularly resembling Gaussian functions centered on each point of the input shape. In this work, we further investigate this phenomenon by integrating these patterns as fixed attention weights within the attention heads of the Transformer architecture. We evaluate two variants: one utilizing predetermined variance values for the Gaussians, and another where the variance values are treated as learnable parameters. Additionally we analyze the performances on noisy data and explore a possible way to improve robustness to noise. Our findings demonstrate that fixing the attention weights not only accelerates the training process but also enhances the stability of the optimization. Furthermore, we conducted an ablation study to identify the specific layers where the infused information is most impactful and to understand the reliance of the network on this information.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube