Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Velocity Field: An Informative Traveling Cost Representation for Trajectory Planning (2409.13282v1)

Published 20 Sep 2024 in cs.RO

Abstract: Trajectory planning involves generating a series of space points to be followed in the near future. However, due to the complex and uncertain nature of the driving environment, it is impractical for autonomous vehicles~(AVs) to exhaustively design planning rules for optimizing future trajectories. To address this issue, we propose a local map representation method called Velocity Field. This approach provides heading and velocity priors for trajectory planning tasks, simplifying the planning process in complex urban driving. The heading and velocity priors can be learned from demonstrations of human drivers using our proposed loss. Additionally, we developed an iterative sampling-based planner to train and compare the differences between local map representations. We investigated local map representation forms for planning performance on a real-world dataset. Compared to learned rasterized cost maps, our method demonstrated greater reliability and computational efficiency.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.