Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RiskMap: A Unified Driving Context Representation for Autonomous Motion Planning in Urban Driving Environment (2406.04451v3)

Published 6 Jun 2024 in cs.RO

Abstract: Motion planning is a complicated task that requires the combination of perception, map information integration and prediction, particularly when driving in heavy traffic. Developing an extensible and efficient representation that visualizes sensor noise and provides basis to real-time planning tasks is desirable. We aim to develop an interpretable map representation, which offers prior of driving cost in planning tasks. In this way, we can simplify the planning process for dealing with complex driving scenarios and visualize sensor noise. Specifically, we propose a unified context representation empowered by deep neural networks. The unified representation is a differentiable risk field, which is an analytical representation of statistical cognition regarding traffic participants for downstream planning tasks. This representation method is nominated as RiskMap. A sampling-based planner is adopted to train and compare RiskMap generation methods. In this paper, the RiskMap generation tools and model structures are explored, the results illustrate that our method can improve driving safety and smoothness, and the limitation of our method is also discussed.

Summary

We haven't generated a summary for this paper yet.