Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Maximum shattering (2409.12945v2)

Published 19 Sep 2024 in math.CO

Abstract: A family $\mathcal{F}$ of subsets of $[n]={1,2,\ldots,n}$ shatters a set $A \subseteq [n]$ if for every $A' \subseteq A$ there is an $F \in \mathcal{F}$ such that $F \cap A=A'$. We develop a framework to analyze $f(n,k,d)$, the maximum possible number of subsets of $[n]$ of size $d$ that can be shattered by a family of size $k$. Among other results, we determine $f(n,k,d)$ exactly for $d \leq 2$ and show that if $d$ and $n$ grow, with both $d$ and $n-d$ tending to infinity, then, for any $k$ satisfying $2d \leq k \leq (1+o(1))2d$, we have $f(n,k,d)=(1+o(1))c\binom{n}{d}$, where $c$, roughly $0.289$, is the probability that a large square matrix over $\mathbb{F}_2$ is invertible. This latter result extends work of Das and M\'esz\'aros. As an application, we improve bounds for the existence of covering arrays for certain alphabet sizes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.