Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

How the (Tensor-) Brain uses Embeddings and Embodiment to Encode Senses and Symbols (2409.12846v2)

Published 19 Sep 2024 in cs.AI, cs.LG, cs.NE, and q-bio.NC

Abstract: The Tensor Brain (TB) has been introduced as a computational model for perception and memory. This paper provides an overview of the TB model, incorporating recent developments and insights into its functionality. The TB is composed of two primary layers: the representation layer and the index layer. The representation layer serves as a model for the subsymbolic global workspace, a concept derived from consciousness research. Its state represents the cognitive brain state, capturing the dynamic interplay of sensory and cognitive processes. The index layer, in contrast, contains symbolic representations for concepts, time instances, and predicates. In a bottom-up operation, sensory input activates the representation layer, which then triggers associated symbolic labels in the index layer. Conversely, in a top-down operation, symbols in the index layer activate the representation layer, which in turn influences earlier processing layers through embodiment. This top-down mechanism underpins semantic memory, enabling the integration of abstract knowledge into perceptual and cognitive processes. A key feature of the TB is its use of concept embeddings, which function as connection weights linking the index layer to the representation layer. As a concept's ``DNA,'' these embeddings consolidate knowledge from diverse experiences, sensory modalities, and symbolic representations, providing a unified framework for learning and memory.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: