Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

TEAM PILOT -- Learned Feasible Extendable Set of Dynamic MRI Acquisition Trajectories (2409.12777v1)

Published 19 Sep 2024 in eess.IV and cs.CV

Abstract: Dynamic Magnetic Resonance Imaging (MRI) is a crucial non-invasive method used to capture the movement of internal organs and tissues, making it a key tool for medical diagnosis. However, dynamic MRI faces a major challenge: long acquisition times needed to achieve high spatial and temporal resolution. This leads to higher costs, patient discomfort, motion artifacts, and lower image quality. Compressed Sensing (CS) addresses this problem by acquiring a reduced amount of MR data in the Fourier domain, based on a chosen sampling pattern, and reconstructing the full image from this partial data. While various deep learning methods have been developed to optimize these sampling patterns and improve reconstruction, they often struggle with slow optimization and inference times or are limited to specific temporal dimensions used during training. In this work, we introduce a novel deep-compressed sensing approach that uses 3D window attention and flexible, temporally extendable acquisition trajectories. Our method significantly reduces both training and inference times compared to existing approaches, while also adapting to different temporal dimensions during inference without requiring additional training. Tests with real data show that our approach outperforms current state-of-theart techniques. The code for reproducing all experiments will be made available upon acceptance of the paper.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.