Theoretical Analysis of Heteroscedastic Gaussian Processes with Posterior Distributions (2409.12622v1)
Abstract: This study introduces a novel theoretical framework for analyzing heteroscedastic Gaussian processes (HGPs) that identify unknown systems in a data-driven manner. Although HGPs effectively address the heteroscedasticity of noise in complex training datasets, calculating the exact posterior distributions of the HGPs is challenging, as these distributions are no longer multivariate normal. This study derives the exact means, variances, and cumulative distributions of the posterior distributions. Furthermore, the derived theoretical findings are applied to a chance-constrained tracking controller. After an HGP identifies an unknown disturbance in a plant system, the controller can handle chance constraints regarding the system despite the presence of the disturbance.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.