2000 character limit reached
Geometry of a Navigation problem: The $λ-$Funk Finsler Metrics
Published 18 Sep 2024 in math.DG | (2409.12058v2)
Abstract: We investigate the travel time in a navigation problem from a geometric perspective. The setting involves an open subset of the Euclidean plane, representing a lake perturbed by a symmetric wind flow proportional to the distance from the origin. The Randers metric derived from this physical problem generalizes the well-known Euclidean metric on the Cartesian plane and the Funk metric on the unit disk. We obtain formulas for distances, or travel times, from point to point, from point to line, and vice-versa
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.