Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the off-diagonal unordered Erdős-Rado numbers (2409.11574v1)

Published 17 Sep 2024 in math.CO

Abstract: Erd\H{o}s and Rado [P. Erd\H{o}s, R. Rado, A combinatorial theorem, Journal of the London Mathematical Society 25 (4) (1950) 249-255] introduced the Canonical Ramsey numbers $\text{er}(t)$ as the minimum number $n$ such that every edge-coloring of the ordered complete graph $K_n$ contains either a monochromatic, rainbow, upper lexical, or lower lexical clique of order $t$. Richer [D. Richer, Unordered canonical Ramsey numbers, Journal of Combinatorial Theory Series B 80 (2000) 172-177] introduced the unordered asymmetric version of the Canonical Ramsey numbers $\text{CR}(s,r)$ as the minimum $n$ such that every edge-coloring of the (unorderd) complete graph $K_n$ contains either a rainbow clique of order $r$, or an orderable clique of order $s$. We show that $\text{CR}(s,r) = O(r3/\log r){s-2}$, which, up to the multiplicative constant, matches the known lower bound and improves the previously best known bound $\text{CR}(s,r) = O(r3/\log r){s-1}$ by Jiang [T. Jiang, Canonical Ramsey numbers and proporly colored cycles, Discrete Mathematics 309 (2009) 4247-4252]. We also obtain bounds on the further variant $\text{ER}(m,\ell,r)$, defined as the minimum $n$ such that every edge-coloring of the (unorderd) complete graph $K_n$ contains either a monochromatic $K_m$, lexical $K_\ell$, or rainbow $K_r$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.