Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Investment with Costly Expert Opinions (2409.11569v1)

Published 17 Sep 2024 in q-fin.PM and math.OC

Abstract: We consider the Merton problem of optimizing expected power utility of terminal wealth in the case of an unobservable Markov-modulated drift. What makes the model special is that the agent is allowed to purchase costly expert opinions of varying quality on the current state of the drift, leading to a mixed stochastic control problem with regular and impulse controls involving random consequences. Using ideas from filtering theory, we first embed the original problem with unobservable drift into a full information problem on a larger state space. The value function of the full information problem is characterized as the unique viscosity solution of the dynamic programming PDE. This characterization is achieved by a new variant of the stochastic Perron's method, which additionally allows us to show that, in between purchases of expert opinions, the problem reduces to an exit time control problem which is known to admit an optimal feedback control. Under the assumption of sufficient regularity of this feedback map, we are able to construct optimal trading and expert opinion strategies.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.