Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multimodal Attention-Enhanced Feature Fusion-based Weekly Supervised Anomaly Violence Detection (2409.11223v1)

Published 17 Sep 2024 in cs.CV

Abstract: Weakly supervised video anomaly detection (WS-VAD) is a crucial area in computer vision for developing intelligent surveillance systems. This system uses three feature streams: RGB video, optical flow, and audio signals, where each stream extracts complementary spatial and temporal features using an enhanced attention module to improve detection accuracy and robustness. In the first stream, we employed an attention-based, multi-stage feature enhancement approach to improve spatial and temporal features from the RGB video where the first stage consists of a ViT-based CLIP module, with top-k features concatenated in parallel with I3D and Temporal Contextual Aggregation (TCA) based rich spatiotemporal features. The second stage effectively captures temporal dependencies using the Uncertainty-Regulated Dual Memory Units (UR-DMU) model, which learns representations of normal and abnormal data simultaneously, and the third stage is employed to select the most relevant spatiotemporal features. The second stream extracted enhanced attention-based spatiotemporal features from the flow data modality-based feature by taking advantage of the integration of the deep learning and attention module. The audio stream captures auditory cues using an attention module integrated with the VGGish model, aiming to detect anomalies based on sound patterns. These streams enrich the model by incorporating motion and audio signals often indicative of abnormal events undetectable through visual analysis alone. The concatenation of the multimodal fusion leverages the strengths of each modality, resulting in a comprehensive feature set that significantly improves anomaly detection accuracy and robustness across three datasets. The extensive experiment and high performance with the three benchmark datasets proved the effectiveness of the proposed system over the existing state-of-the-art system.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: