Symmetries of Liouvillians of squeeze-driven parametric oscillators (2409.10744v2)
Abstract: We study the symmetries of the Liouville superoperator of one dimensional parametric oscillators, especially the so-called squeeze-driven Kerr oscillator, and discover a remarkable quasi-spin symmetry $su(2)$ at integer values of the ratio $\eta =\omega /K$ of the detuning parameter $\omega$ to the Kerr coefficient $K$, which reflects the symmetry previously found for the Hamiltonian operator. We find that the Liouvillian of an $su(2)$ representation $\left\vert j,m_{j}\right\rangle$ has a characteristic double-ellipsoidal structure, and calculate the relaxation time $T_{X}$ for this structure. We then study the phase transitions of the Liouvillian which occur as a function of the parameters $\xi =\varepsilon _{2}/K$ and $\eta=\omega /K$. Finally, we study the temperature dependence of the spectrum of eigenvalues of the Liouvillian. Our findings may have applications in the generation and stabilization of states of interest in quantum computing.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.