Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Why you should also use OLS estimation of tail exponents (2409.10448v2)

Published 16 Sep 2024 in stat.ME, econ.EM, math.ST, and stat.TH

Abstract: Even though practitioners often estimate Pareto exponents running OLS rank-size regressions, the usual recommendation is to use the Hill MLE with a small-sample correction instead, due to its unbiasedness and efficiency. In this paper, we advocate that you should also apply OLS in empirical applications. On the one hand, we demonstrate that, with a small-sample correction, the OLS estimator is also unbiased. On the other hand, we show that the MLE assigns significantly greater weight to smaller observations. This suggests that the OLS estimator may outperform the MLE in cases where the distribution is (i) strictly Pareto but only in the upper tail or (ii) regularly varying rather than strictly Pareto. We substantiate our theoretical findings with Monte Carlo simulations and real-world applications, demonstrating the practical relevance of the OLS method in estimating tail exponents.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: