Linear representations, crystallographic quotients, and twisted conjugacy of virtual Artin groups (2409.10270v2)
Abstract: Virtual Artin groups were recently introduced by Bellingeri, Paris, and Thiel as broad generalizations of the well-known virtual braid groups. For each Coxeter graph $\Gamma$, they defined the virtual Artin group $VA[\Gamma]$, which is generated by the corresponding Artin group $A[\Gamma]$ and the Coxeter group $W[\Gamma]$, subject to certain mixed relations inspired by the action of $W[\Gamma]$ on its root system $\Phi[\Gamma]$. There is a natural surjection $ \mathrm{VA}[\Gamma] \rightarrow W[\Gamma]$, with the kernel $PVA[\Gamma]$ representing the pure virtual Artin group. In this paper, we explore linear representations and crystallographic quotients of virtual Artin groups. Inspired from the work of Cohen, Wales, and Krammer, we construct a linear representation of the virtual Artin group $VA[\Gamma]$. As a consequence of this representation, we deduce that if $W[\Gamma]$ is a spherical Coxeter group, then $VA[\Gamma]/PVA[\Gamma]'$ is a crystallographic group of dimension $ |\Phi[\Gamma]|$ with the holonomy group $W[\Gamma]$. We also investigate twisted conjugacy in these groups, and prove that each right-angled virtual Artin group admit the $R_\infty$-property.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.