Papers
Topics
Authors
Recent
2000 character limit reached

3D-TAFS: A Training-free Framework for 3D Affordance Segmentation (2409.10078v5)

Published 16 Sep 2024 in cs.RO

Abstract: Translating high-level linguistic instructions into precise robotic actions in the physical world remains challenging, particularly when considering the feasibility of interacting with 3D objects. In this paper, we introduce 3D-TAFS, a novel training-free multimodal framework for 3D affordance segmentation. To facilitate a comprehensive evaluation of such frameworks, we present IndoorAfford-Bench, a large-scale benchmark containing 9,248 images spanning 20 diverse indoor scenes across 6 areas, supporting standardized interaction queries. In particular, our framework integrates a large multimodal model with a specialized 3D vision network, enabling a seamless fusion of 2D and 3D visual understanding with language comprehension. Extensive experiments on IndoorAfford-Bench validate the proposed 3D-TAFS's capability in handling interactive 3D affordance segmentation tasks across diverse settings, showcasing competitive performance across various metrics. Our results highlight 3D-TAFS's potential for enhancing human-robot interaction based on affordance understanding in complex indoor environments, advancing the development of more intuitive and efficient robotic frameworks for real-world applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.