Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Constrained Bandwidth Observation Sharing for Multi-Robot Navigation in Dynamic Environments via Intelligent Knapsack (2409.09975v2)

Published 16 Sep 2024 in cs.RO

Abstract: Multi-robot navigation is increasingly crucial in various domains, including disaster response, autonomous vehicles, and warehouse and manufacturing automation. Robot teams often must operate in highly dynamic environments and under strict bandwidth constraints imposed by communication infrastructure, rendering effective observation sharing within the system a challenging problem. This paper presents a novel optimal communication scheme, Intelligent Knapsack (iKnap), for multi-robot navigation in dynamic environments under bandwidth constraints. We model multi-robot communication as belief propagation in a graph of inferential agents. We then formulate the combinatorial optimization for observation sharing as a 0/1 knapsack problem, where each potential pairwise communication between robots is assigned a decision-making utility to be weighed against its bandwidth cost, and the system has some cumulative bandwidth limit. We evaluate our approach in a simulated robotic warehouse with human workers using ROS2 and the Open Robotics Middleware Framework. Compared to state-of-the-art broadcast-based optimal communication schemes, iKnap yields significant improvements in navigation performance with respect to scenario complexity while maintaining a similar runtime. Furthermore, iKnap utilizes allocated bandwidth and observational resources more efficiently than existing approaches, especially in very low-resource and high-uncertainty settings. Based on these results, we claim that the proposed method enables more robust collaboration for multi-robot teams in real-world navigation problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: