Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Satake correspondence for the equivariant quantum differential equations and qKZ difference equations of Grassmannians

Published 15 Sep 2024 in math.AG | (2409.09657v1)

Abstract: We consider the joint system of equivariant quantum differential equations (qDE) and qKZ difference equations for the Grassmannian $G(k,n)$, which parametrizes $k$-dimensional subspaces of $\mathbb{C}n$. First, we establish a connection between this joint system for $G(k,n)$ and the corresponding system for the projective space $\mathbb{P}{n-1}$. Specifically, we show that, under suitable \textit{Satake identifications} of the equivariant cohomologies of $G(k,n)$ and $\mathbb{P}{n-1}$, the joint system for $G(k,n)$ is gauge equivalent to a differential-difference system on the $k$-th exterior power of the cohomology of $\mathbb{P}{n-1}$. Secondly, we demonstrate that the \textcyr{B}-theorem for Grassmannians, as stated in arXiv:1909.06582, arXiv:2203.03039, is compatible with the Satake identification. This implies that the \textcyr{B}-theorem for $\mathbb{P}{n-1}$ extends to $G(k,n)$ through the Satake identification. As a consequence, we derive determinantal formulas and new integral representations for multi-dimensional hypergeometric solutions of the joint qDE and qKZ system for $G(k,n)$. Finally, we analyze the Stokes phenomenon for the joint system of qDE and qKZ equations associated with $G(k,n)$. We prove that the Stokes bases of solutions correspond to explicit $K$-theoretical classes of full exceptional collections in the derived category of equivariant coherent sheaves on $G(k,n)$. Furthermore, we show that the Stokes matrices equal the Gram matrices of the equivariant Euler-Poincar\'e-Grothendieck pairing with respect to these exceptional $K$-theoretical bases.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.