Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 215 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SparX: A Sparse Cross-Layer Connection Mechanism for Hierarchical Vision Mamba and Transformer Networks (2409.09649v2)

Published 15 Sep 2024 in cs.CV

Abstract: Due to the capability of dynamic state space models (SSMs) in capturing long-range dependencies with linear-time computational complexity, Mamba has shown notable performance in NLP tasks. This has inspired the rapid development of Mamba-based vision models, resulting in promising results in visual recognition tasks. However, such models are not capable of distilling features across layers through feature aggregation, interaction, and selection. Moreover, existing cross-layer feature aggregation methods designed for CNNs or ViTs are not practical in Mamba-based models due to high computational costs. Therefore, this paper aims to introduce an efficient cross-layer feature aggregation mechanism for vision backbone networks. Inspired by the Retinal Ganglion Cells (RGCs) in the human visual system, we propose a new sparse cross-layer connection mechanism termed SparX to effectively improve cross-layer feature interaction and reuse. Specifically, we build two different types of network layers: ganglion layers and normal layers. The former has higher connectivity and complexity, enabling multi-layer feature aggregation and interaction in an input-dependent manner. In contrast, the latter has lower connectivity and complexity. By interleaving these two types of layers, we design a new family of vision backbone networks with sparsely cross-connected layers, achieving an excellent trade-off among model size, computational cost, memory cost, and accuracy in comparison to its counterparts. For instance, with fewer parameters, SparX-Mamba-T improves the top-1 accuracy of VMamba-T from 82.5\% to 83.5\%, while SparX-Swin-T achieves a 1.3\% increase in top-1 accuracy compared to Swin-T. Extensive experimental results demonstrate that our new connection mechanism possesses both superior performance and generalization capabilities on various vision tasks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.