Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

ELMS: Elasticized Large Language Models On Mobile Devices (2409.09071v1)

Published 8 Sep 2024 in cs.DC and cs.AI

Abstract: On-device LLMs are revolutionizing mobile AI, enabling applications such as UI automation while addressing privacy concerns. Currently, the standard approach involves deploying a single, robust LLM as a universal solution for various applications, often referred to as LLM-as-a-Service (LLMaaS). However, this approach faces a significant system challenge: existing LLMs lack the flexibility to accommodate the diverse Service-Level Objectives (SLOs) regarding inference latency across different applications. To address this issue, we introduce ELMS, an on-device LLM service designed to provide elasticity in both the model and prompt dimensions of an LLMaaS. This system includes: A one-time neuron reordering technique, which utilizes the inherent permutation consistency within transformer models to create high-quality, elastic sub-models with minimal runtime switching costs. A dual-head compact LLM, which efficiently refines prompts and coordinates the elastic adaptation between the model and the prompt. We have implemented this elastic on-device LLM service on several off-the-shelf (COTS) smartphones and evaluate ELMS using both standalone NLP/mobile-agent datasets and synthesized end-to-end traces. Across a range of SLOs, ELMS surpasses four strong baselines by up to 16.83% and 11.04% in absolute accuracy on average, with less than 1% Time-To-First-Token (TTFT) switching overhead, comparable memory usage, and fewer than 100 offline GPU hours.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube