Representing Born effective charges with equivariant graph convolutional neural networks (2409.08940v1)
Abstract: Graph convolutional neural networks have been instrumental in machine learning of material properties. When representing tensorial properties, weights and descriptors of a physics-informed network must obey certain transformation rules to ensure the independence of the property on the choice of the reference frame. Here we explicitly encode such properties using an equivariant graph convolutional neural network. The network respects rotational symmetries of the crystal throughout by using equivariant weights and descriptors and provides a tensorial output of the target value. Applications to tensors of atomic Born effective charges in diverse materials including perovskite oxides, Li3PO4, and ZrO2, are demonstrated, and good performance and generalization ability is obtained.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.