Integral formulas for two-layer Schur and Whittaker processes (2409.08927v2)
Abstract: Stationary measures of last passage percolation with geometric weights and the log-gamma polymer in a strip of the $\mathbb Z2$ lattice are characterized in arXiv:2306.05983 using variants of Schur and Whittaker processes, called two-layer Gibbs measures. In this article, we prove contour integral formulas characterizing the multipoint joint distribution of two-layer Schur and Whittaker processes. We also express them as Doob transformed Markov processes with explicit transition kernels. As an example of application of our formulas, we compute the growth rate of the KPZ equation on $[0,L]$ with arbitrary boundary parameters.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.