Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Ramsey numbers for partially ordered sets (2409.08819v1)

Published 13 Sep 2024 in math.CO

Abstract: In this thesis, we present quantitative Ramsey-type results in the setting of finite sets that are equipped with a partial order, so-called posets. A prominent example of a poset is the Boolean lattice $Q_n$, which consists of all subsets of ${1,\dots,n}$, ordered by inclusion. For posets $P$ and $Q$, the poset Ramsey number $R(P,Q)$ is the smallest $N$ such that no matter how the elements of $Q_N$ are colored in blue and red, there is either an induced subposet isomorphic to $P$ in which every element is colored blue, or an induced subposet isomorphic to $Q$ in which every element is colored red. The central focus of this thesis is to investigate $R(P,Q_n)$, where $P$ is fixed and $n$ grows large. Our results contribute to an active area of discrete mathematics, which studies the existence of large homogeneous substructures in host structures with local constraints, introduced for graphs by Erd\H{o}s and Hajnal. We provide an asymptotically tight bound on $R(P,Q_n)$ for $P$ from several classes of posets, and show a dichotomy in the asymptotic behavior of $R(P,Q_n)$, depending on whether $P$ contains a subposet isomorphic to one of two specific posets. A fundamental question in the study of poset Ramsey numbers is to determine the asymptotic behavior of $R(Q_n,Q_n)$ for large $n$. In this dissertation, we present improvements on the known lower and upper bound on $R(Q_n,Q_n)$. Moreover, we explore variations of the poset Ramsey setting, including Erd\H{o}s-Hajnal-type questions when the small forbidden poset has a non-monochromatic color pattern, and so-called weak poset Ramsey numbers, which are concerned with non-induced subposets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube