Papers
Topics
Authors
Recent
Search
2000 character limit reached

Dynamic Link and Flow Prediction in Bank Transfer Networks

Published 13 Sep 2024 in econ.GN and q-fin.EC | (2409.08718v2)

Abstract: The prediction of both the existence and weight of network links at future time points is essential as complex networks evolve over time. Traditional methods, such as vector autoregression and factor models, have been applied to small, dense networks, but become computationally impractical for large-scale, sparse, and complex networks. Some machine learning models address dynamic link prediction, but few address the simultaneous prediction of both link presence and weight. Therefore, we introduce a novel model that dynamically predicts link presence and weight by dividing the task into two sub-tasks: predicting remittance ratios and forecasting the total remittance volume. We use a self-attention mechanism that combines temporal-topological neighborhood features to predict remittance ratios and use a separate model to forecast the total remittance volume. We achieve the final prediction by multiplying the outputs of these models. We validated our approach using two real-world datasets: a cryptocurrency network and bank transfer network.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.