Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Multivariate mean equicontinuity for finite-to-one topomorphic extensions (2409.08707v1)

Published 13 Sep 2024 in math.DS

Abstract: In this note, we generalise the concept of topo-isomorphic extensions and define finite topomorphic extensions as topological dynamical systems whose factor map to the maximal equicontinuous factor is measure-theoretically at most $m$-to-one for some $m\in\mathbb{N}$. We further define multivariate versions of mean equicontinuity, complementing the notion of multivariate mean sensitivity introduced by Li, Ye and Yu, and then show that any $m$-to-one topomorphic extension is mean $(m+1)$-equicontinuous. This falls in line with the well-known result, due to Downarowicz and Glasner, that strictly ergodic systems are isomorphic extensions if and only if they are mean equicontinuous. While in the multivariate case we can only conjecture that the converse direction also holds, the result provides an indication that multivariate equicontinuity properties are strongly related to finite extension structures. For minimal systems, an Auslander-Yorke type dichotomy between multivariate mean equicontinuity and sensitivity is shown as well.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube